Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yun-Feng Chen, Bao-Han Zhou, Guo-Dong Yin and An-Xin Wu*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.042$
$w R$ factor $=0.117$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diethyl cis-1,2,3,4,5,10-hexahydro-6-iodo-1,4-dioxo-2,3,4a,10a-tetraazabenzo[g]-cyclopent[cd]azulene-2a,10b-dicarboxylate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{6}$, is a glycoluril derivative which contains four fused rings. An iodobenzene ring is fused to a seven-membered ring linked to two of the N atoms from the separate rings of the glycoluril system. The structure is stabilized by intermolecular hydrogen bonds and $\pi-\pi$-stacking interactions.

Comment

Glycoluril derivatives (see scheme) have been widely used in molecular recognition, self-assembly, self-sorting and catalysis. Work by various groups has devised many practical synthetic methods for the preparation of such derivatives (Rowan et al., 1999; Sijbesma \& Nolte, 1995; Rebek, 1996, 1999; Wu et al., 2002). An important step in many of these syntheses involves the nucleophilic addition of glycoluril anions to 1,2-bis(halomethyl)aromatics to generate glycoluril derivatives bearing o-xylylene rings on one or both sides of the glycoluril skeleton. We have obtained a new glycoluril derivative, (I), (Fig. 1) by the reaction of 1,2-bis(bromomethyl)-3-iodobenzene with diethoxycarbonyl glycoluril.

Received 20 June 2005
Accepted 6 July 2005
Online 9 July 2005

(I)

Glycoluril dervatives, $\mathrm{R}=\mathrm{H}$, COOEt,
$\mathrm{Me}, \mathrm{Ph},\left(\mathrm{CH}_{2}\right)_{4}, 2$-pyridyl
In the crystal structure, there are three hydrogen bonds (Fig. 3 and Table 2); two are strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds that link pairs of molecules from adjacent sheets. The sheets form as a result of the third, weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond. Additional stabilization comes from $\pi-\pi$ stacking interactions (Janiak, 2000) between adjacent iodobenzene rings (Fig. 2). The distance between the centroids of adjacent iodobenzene rings is $3.624(3) \AA$ and the dihedral angle between them is 0.02 (1) ${ }^{\circ}$.

Experimental

The title compound was synthesized according to the literature procedure of Wu et al. (2002). Crystals appropriate for data collection were obtained by slow evaporation of a chloroform-methanol (1:1 $v / v)$ solution at 283 K .

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{6}$
$M_{r}=514.27$
Triclinic, $P \overline{1}$
$a=8.0414(8) \AA$
$b=8.7014(8) \AA$
$c=14.3196(14) \AA$
$\alpha=87.205(2)^{\circ}$
$\beta=88.374(2)^{\circ}$
$\gamma=84.521(2)^{\circ}$
$V=995.92(17) \AA^{\circ}$

$Z=2$

$D_{x}=1.715 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4277
reflections
$\theta=2.6-28.2^{\circ}$
$\mu=1.65 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.637, T_{\text {max }}=0.734$
5656 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.117$
$S=1.04$
3485 reflections
264 parameters
H-atom parameters constrained

3485 independent reflections
3231 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 9$
$l=-17 \rightarrow 15$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0617 P)^{2}\right. \\
\quad+2.2689 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.26 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-1.03 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

C1-I1	$2.087(5)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.384(5)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.463(5)$	$\mathrm{C} 15-\mathrm{N} 4$	$1.434(5)$
$\mathrm{C} 9-\mathrm{O} 1$	$1.203(5)$	$\mathrm{C} 16-\mathrm{O} 6$	$1.320(6)$
C $9-\mathrm{N} 3$	$1.378(6)$		
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{I} 1$	$123.6(3)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 15$	$101.1(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.2(4)$	$\mathrm{N} 4-\mathrm{C} 15-\mathrm{N} 3$	$115.1(3)$
N1-C7-C6	$114.8(3)$	$\mathrm{N} 3-\mathrm{C} 15-\mathrm{C} 16$	$108.6(3)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{N} 1$	$126.1(4)$		
C6-C1-C2-C3	$0.6(7)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{N} 2$	$-121.3(4)$
$\mathrm{I} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.0(4)$	$\mathrm{N} 4-\mathrm{C} 15-\mathrm{N} 3-\mathrm{C} 9$	$-116.5(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-59.8(5)$	$\mathrm{N} 3-\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 10$	$92.9(4)$

Figure 2
$\pi-\pi$ stacking of the aromatic rings in (I). [Symmetry code: (a) $1-x$, $2-y, 1-z$.]

Figure 3
The intermolecular hydrogen bonding in (I). Hydrogen bonds are drawn as dashed lines. [Symmetry codes: $(a) 1+x, y, z ;(b)-x, 2-y,-z ;(c)$ $1-x, 2-y,-z$.]

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{2}$	0.93	2.41	$3.247(6)$	149
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots 5^{\mathrm{ii}}$	0.86	2.16	$3.020(5)$	173
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iii }}$	0.86	2.07	$2.828(4)$	146

Symmetry codes: (i) $x+1, y, z$; (ii) $-x,-y+2,-z$; (iii) $-x+1,-y+2,-z$.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. All other H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and constrained to ride on their parent

organic papers

atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak and deepest hole are located 0.84 and 0.72 A from atoms I1 and I1, respectively.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University and the National Natural Science Foundation of China (No. 20472022) for financial support.

References

Bruker (1997). SMART (Version 5.054), SAINT (Version 6.01) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Janiak, C. J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Rebek, J. Jr (1996). Chem. Soc. Rev. 25, 255-264.
Rebek, J. Jr (1999). Acc. Chem. Res. 32, 278-286
Rowan, A. E., Elemans, J. A. A. W. \& Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sijbesma, R. P. \& Nolte, R. J. M. (1995). Top. Curr. Chem. 175, 25-56.
Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. \& Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.

[^0]: © 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

